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ABSTRACT:  The Cognitive Foundry is a unified collection of tools for Cognitive Science and Technology 

applications, supporting the development of intelligent agent models. The Foundry has two primary components 

designed to facilitate agent construction: the Cognitive Framework and Machine Learning packages. The Cognitive 

Framework provides design patterns and default implementations of an architecture for evaluating theories of 

cognition, as well as a suite of tools to assist in the building and analysis of theories of cognition. The Machine 

Learning package provides tools for populating components of the Cognitive Framework from domain-relevant data 

using automated knowledge-capture techniques. This paper describes the Cognitive Foundry with a focus on its 

application within the context of agent behavior modeling.  

 

1 Introduction 

The Cognitive Foundry is a unified collection of software 

tools for Cognitive Science and Technology (CS&T) 

applications. CS&T is a developing field at the 

intersection of cognitive science, computer science, and 

engineering that takes fundamental concepts from 

cognitive science and neuroscience and deploys systems 

implementing these ideas.  To further the goals of this 

multidisciplinary field, we have designed the Foundry to 

be a robust, extensible platform to support research, rapid 

prototyping, and system deployment, while adhering to 

rigorous software-engineering principles. Instead of 

pushing a single theory of cognition, the Foundry contains 

reusable software components and algorithms designed to 

support a wide variety of development needs. The 

software architecture of the Foundry promotes reusability, 

maintainability, and cross-platform compatibility, without 

sacrificing computational resources by leveraging best-in-

class numerical packages. 

 

2 Why the Cognitive Foundry 

As the Sandia National Laboratories CS&T program grew 

from its infancy, the use cases for our cognitive-modeling 

software evolved as well, driven by both researcher- and 

customer-centric needs.  For basic-research 

experimentation, researchers wanted a reusable toolkit 

that allowed the rapid prototyping and visualization of 

new ideas and hypotheses in modeling cognition, as well 

as statistical-validation techniques to compare 

performance against a standard battery of existing results 

from the literature.  Our customers have expressed an 

increasing interest in automatically populating cognitive 

models through automated knowledge-capture algorithms, 

processing large amounts of data efficiently, parallel and 

distributed computation, and verifiable software-

development processes.  We meet these seemingly 

divergent requirements by creating a graduated set of 

programmer interfaces that enable both research 

experimentation and system deployment, and the Foundry 

assists users by providing a set of tools that accompany 

those interfaces. For example, if a particular project 

would benefit from parallel computation, then the user 

can implement the rather simple methods associated with 

the Concurrent Cognitive Module interface.  The Foundry 

then automatically provides the mechanisms to execute 

the code in a parallel fashion, with no additional burden 

placed on the user.  We chose this graduated-interface 

strategy to support both the general case by providing a 

robust set of core functionality while also providing the 

infrastructure for rapidly constructing special-purpose 

applications that may require more intricate or onerous 

functionality.  The manifestation of the Cognitive 

Foundry philosophy is that we provide a number of 

interfaces, some of which are easy to implement, while 

others may be more time consuming.  The more 

interfaces, or functionality, that a Foundry developer can 

implement, the more Foundry tools can be brought to bear 

on the problem.  Thus, users can select the parts that 

provide the best benefit to a specific project.  The 

Foundry’s Cognitive Framework provides a reusable 

framework for building agents and experimenting with 

cognitive simulation. The Machine Learning package 

provides a large library of powerful learning algorithm 

implementations that can be used on their own or to create 



components of the Cognitive Framework. Each 

component in the Cognitive Foundry is a tool that we 

have found useful for building cognitive models and 

cognitive systems. 

 

2.1 Benefits of the Cognitive Foundry 

One of the primary lessons learned from the maturation of 

Sandia’s CS&T program is that the Cognitive Foundry 

must provide coverage and support of a cognitive system 

from idea to deployment, not just a cognitive simulation. 

The Cognitive Foundry’s modularity allows users to 

determine which components are necessary, or provide 

value, to a particular project by selecting the tools used to 

solve common cognitive-systems tasks, while being 

assured that rigorous software-engineering quality 

processes have been employed. The Foundry also 

provides a well-defined path for components to 

incorporate the latest research ideas and transition them 

into a deployed system.  Applications built on the 

Cognitive Foundry’s Framework and Machine Learning 

packages can immediately make use of new modules for 

cognitive simulation and new algorithms that conform to 

the common set of interfaces. 

 

2.2 Communicating with the Cognitive Foundry 

The Cognitive Foundry is written in the Sun Java 1.5 

programming language. We have also developed several 

other ways to interoperate with the Cognitive Foundry 

from non-Java applications, as shown in Figure 1.  For 

example, we have created a native-machine interface that 

allows applications written in other programming 

languages, such as ANSI C/C++ or Microsoft .NET (C#, 

Visual Basic) to call directly into the Foundry API.  The 

Cognitive Foundry also has a Network Interface library to 

facilitate connecting to, viewing, controlling, and 

launching models over a network.  Finally, The Cognitive 

Foundry has a graphical user interface to support the 

inspection or manipulation of cognitive models during 

creation and execution. 

 

2.3 Design Methodology 

On a philosophical level, the design of the Cognitive 

Foundry has followed a graduated interface approach. 

That is, the Cognitive Foundry is built on top of a set of 

well defined, hierarchical interfaces. For example, the 

Cognitive Foundry defines the functionality that a 

Cognitive Model (a memory space, collection of modules, 

etc.) and Multivariate Minimization Algorithm (an 

objective function, an iteration loop, etc.) must possess.  

The Cognitive Foundry then provides one or more default 

implementations of these interfaces.  However, 

developers can always create their own tailor-made 

implementations if existing ones do not meet their needs, 

allowing researchers to test new ideas and hypotheses 

quickly.  Since other tools in the Cognitive Foundry 

provide functionality at the interface level, new 

implementations can automatically exploit existing 

functionality provided by other components in the 

Foundry by conforming to a defined interface. There are 

several benefits to this interface-centric component-based 

approach. It provides an easy mechanism for customizing 

existing object implementations in the Foundry. It also 

gives the ability to pick the specific objects from the 

Foundry that are useful for a certain application. Finally, 

it creates an integration point for many applications, 

which defines an easy transition path from research to 

deployment. 

 

3 Cognitive Framework 

The Foundry’s Cognitive Framework is a modular 

software architecture for cognitive simulation designed 

for use in CS&T applications.  The Cognitive Framework 

itself is a collection of interfaces, which allows 

Framework users to either leverage the existing tools in 

the Framework or specify different implementations to fit 

their specific needs in order to test new ideas and 

hypotheses. 

 

3.1 Cognitive Model 

The Cognitive Framework is designed so that different, 

and possibly competing, elements of a “theory of 

cognition” can be instantiated as desired, as shown in 

Figure 2.  This is accomplished by having a Cognitive 

Module perform some aspect of a psychologically 

plausible cognitive process.  A Cognitive Model, then, 

contains a collection of Cognitive Modules whose 

purpose is to instantiate some aspect of cognition. The 

main components of a Cognitive Model are shown in 

Figure 3.  Conceptually, Cognitive Modules are the 

workhorse classes inside a Cognitive Model.  A Cognitive 

Model and its corresponding Cognitive Modules use a 

single central container to store all state information, 

called a Cognitive Model State.  The state contains the 

sufficient information needed to allow a Cognitive Model 
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Figure 1. Dependency graph diagram of Cognitive 

Foundry components and interoperability methods. 
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to resume execution later, or on another machine, without 

altering the results of a simulation.  Furthermore, the 

Cognitive Model State can be sent across a network to 

distribute computation and exploit the parallelization 

inherent in many cognitive agent simulations.  The 

Cognitive Framework supports the serialization of 

Cognitive Models using a binary format, human-editable 

XML, or comma-separated values. 

 

3.2 Cognitive Module 

The Cognitive Module interface gives users fine-grained 

control of what aspects of a “theory of cognition” are 

incorporated into a particular Cognitive Model. The 

primary functionality of a Cognitive Module is contained 

in its “update” method. The update method is given the 

current Cognitive Model State, along with the previous 

state of the Cognitive Module and the current set of 

sensory inputs. The update method of each Cognitive 

Module returns its state for the next time step.  Cognitive 

Modules can pass information to one another through the 

Cognitive Model State object, which contains a 

blackboard-like component where information can be 

posted and read by any Cognitive Module. 

 

3.3 Cognitive Element (Cogxel) 

The Framework operates on a key data structure interface: 

the cogxel. Cogxel stands for “cognitive element” and is 

modeled after the word “pixel,” which means picture 

element.  A cogxel is the fundamental unit of data in the 

Cognitive Framework.  Cogxels normally reside in the 

Cognitive Model State (blackboard), as they represent the 

overall state of the model.  Cogxels are accessed by a 

high-level “semantic label” that describes the data 

contained by cogxel, such as “Heart Rate” or 

“Context12345.”  Cogxels are in turn stored in a manner 

that allows constant-time lookup of the data contained by 

the cogxel, allowing efficient retrieval along with 

semantically meaningful storage.  A default cogxel 

implementation consists of a semantic label and a scalar 

activation level.  However, being an interface, other 

applications have created their own cogxel 

implementations that use bindings, activation flags, etc. 

Thus, cogxels can be adapted to fit the specific needs of 

an application or a theory of cognition, such as to model 

symbolic, non-symbolic, or structured information. 

 

3.4 Lightweight Implementation 

The Cognitive Framework Lite is an implementation of 

the Cognitive Framework interfaces that abide by the 

specifications set forth by some of our customers and 

stakeholders. It is specifically designed for having many 

agent models within a larger simulation.  It is a “lite” 

version of the interfaces because it does not allow for the 

dynamic addition or removal of modules while the model 

is running. This means that all modules must be added to 

the model at its creation time. This allows for compact 

data structures and a simple, fast update loop within the 

model.  The “lite” version of the model can run within a 

high-performance computing (supercomputer) 

environment, with many models executing on a single 

processor with a minimal memory footprint. The “lite” 

implementation also contains lightweight 

implementations of some basic cognitive modules, such 

as a semantic network and perception modules. 

 

3.5 Concurrent Implementation 

Cognitive Models requiring significant computational 

resources can employ a concurrent implementation of the 

Cognitive Framework.  For example, we are currently 

developing a theory of analogical reasoning using 

physiological models of visual and prefrontal cortex that 

Figure 3. Cognitive Model components. One object 

encapsulates the entire state of the model. The design 

emphasizes modularity and state encapsulation. 
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employs large numbers of computational units 

representing cortical columns in the human brain.  The 

concurrent implementation provides a means for 

distributing computation in parallel across available 

computing resources on local machines, namely multi-

core and multi-processor computers.  It also provides the 

basis for future extensions of the Cognitive Framework to 

support distributed computation across networked 

computational resources. 

 

The concurrent implementation breaks up the update 

method of a Cognitive Module into three steps: read state, 

evaluate, and write state.  A concurrent cognitive model 

can then operate as follows: all modules read required 

input state information sequentially, followed by parallel 

execution of each module’s evaluate method, with the 

update method completed by having each module write 

out its state information in sequence. The Cognitive 

Foundry provides a default implementation of this parallel 

computation, which employs a thread pool with a user-

defined number of threads onto which module evaluations 

are scheduled for execution.  In this way, a user may fully 

utilize multiple cores and processors on a desktop 

computer for model execution.  Future implementations 

will allow distributed computation through evaluations on 

network compute resources. 

 

3.6 Perception Module 

Every CS&T application needs a way to glean 

information from the environment.  The Cognitive 

Framework accomplishes this by specifying a perception 

module, capable of taking some external data source and 

transforming relevant information from it into a form that 

other modules can process (i.e., cogxels). Perception is 

represented as a module such that different approaches to 

perception can be experimented with, and possibly 

combined. 

 

3.7 Manual Knowledge Elicitation and Automated 

Knowledge Capture 

Perhaps the most intricate and application-specific step in 

creating a Cognitive Model is providing the proper set of 

parameters needed to configure the Cognitive Modules. 

Some Cognitive Modules can use predefined parameter 

sets, but most need to be loaded with domain-specific 

information.  In general, there are two approaches to solve 

this problem: manual knowledge elicitation and 

automated knowledge capture. Manual knowledge 

elicitation involves a structured interview with a subject 

matter expert and the subsequent encoding of this 

information into a form that the Cognitive Foundry can 

understand. The Cognitive Foundry provides support for 

manual knowledge elicitation through both user-interface 

components and human-editable input file formats, such 

as Microsoft Excel and XML.  Not surprisingly, manual 

knowledge elicitation is quite labor intensive and 

intractable for application domains where there are many 

interacting factors, as the combinatorics get out of hand 

quickly.  Furthermore, slight changes in the application 

domain require a complete retooling of the elicitation 

process, generally resulting in another interview of the 

subject matter expert.  The alternative approach, 

automated knowledge capture, involves collecting a 

relevant set of data in the application domain and then 

using that data along with a set of machine-learning, or 

data-mining, algorithms to create the necessary 

information needed for the Cognitive Module. The 

Cognitive Foundry provides support for this approach 

through the Machine Learning package, discussed in 

section 4. 

 

The main constraint that automated knowledge-capture 

techniques have is that they all require relevant data for 

the problem they are addressing, usually in large amounts. 

If no relevant data exists, or can be readily collected, then 

automated knowledge-capture techniques may not be of 

much help in solving the problem.  However, if a user has 

access to, or a mechanism to collect, relevant data, then 

an automated knowledge-capture technique probably 

exists that can accurately populate a cognitive model to 

predict or categorize the problem at hand.  In some cases, 

real data may have to be augmented with synthetic data to 

provide enough support for the automated knowledge-

capture algorithms.  However, there exist procedures for 

this augmentation as well. 

 

The Foundry contains a Framework-Learning integration 

package that was designed so that components of the 

Cognitive Framework package could be used in 

conjunction with machine-learning algorithms.  In other 

words, this provides users of the Cognitive Framework 

inline access to the large collection of automated 

knowledge-capture algorithms from the Machine 

Learning package by automatically populating Cognitive 

Modules from data without the tedious process of manual 

knowledge elicitation.  By using the modules of the 

Framework-Learning package, a developer can 

automatically create models of behavior and cognitive 

processes gathered from disparate data sources. 

 

 

3.8 Cognitive Model Factory 

A Cognitive Model Factory is a container that holds the 

complete recipe for making a Cognitive Model: the full 

list of modules and all of their parameters. Having a 

factory allows multiple copies of the same model to be 

instantiated and provided different inputs. It also provides 

a mechanism for modules to share static information 

across Cognitive Model instances so that the data does not 

have to be copied, thus saving memory in large-scale 



simulations.  To borrow an example from physics, all 

oxygen-16 molecules are identical; they have the same 

static parameterization.  To create a simulation of many 

interacting oxygen molecules, it is not necessary to copy 

the parameterization of an oxygen molecule for each 

model; they can share this static information.  This saves 

memory and the needless computation used to copy the 

redundant parameterization.  Cognitive Model Factories 

provide an analogous functionality, allowing Cognitive 

Modules to share static information across many 

instances. 

 

3.9 Using the Output of a Cognitive Model 

The final step in integrating a Cognitive Model into a 

CS&T application is to determine how to use the output 

of the model for the application. By this, we mean using 

information contained within cogxels to perform some 

sort of behavior or action for an agent within its 

environment. Typically, this is accomplished by 

determining the semantic labels for the cogxels containing 

the relevant output information for generating actions. 

However, an application can access and make use of any 

cogxel in the Cognitive Model State, which means it has a 

vast amount of information regarding the internal state of 

the Cognitive Model to make use of when generating an 

action. Figure 4 illustrates the overall operation of a 

Cognitive Model. 

 

The Cognitive Foundry contains graphical user-interface 

tools that can display the outputs, and internal state, of a 

Cognitive Model.  While a predefined user interface may 

not be applicable for a particular end-user application, 

developers often find it helpful for rapid-prototyping or 

debugging purposes. Following the design philosophy of 

the Foundry, the piece components of the user interface 

may serve as the basis for various end-user applications.  

 

3.10 Example Implementation of a Cognitive Model 

The design of the Cognitive Foundry supports cognitive 

simulation at many levels of fidelity from low-level 

connectionist networks to high-level, abstract symbolic 

approaches. We have used the Cognitive Foundry for a 

variety of research projects, including building a model of 

driving difficulty, agents in economic and social 

simulations, and evaluating trainee performance in a 

simulated environment.  Here we present a brief overview 

of an application of the Cognitive Foundry for a current 

project underway to better elucidate how the Foundry 

helps support cognitive simulations.  The project entails 

constructing a model of human analogical reasoning 

based on published psychological and physiological 

literature and research into human performance on a 

visual test of intelligence.  For this model, the level of 

fidelity to be simulated is that of a single cortical column 

within the human brain.  Currently we are employing 

Fuzzy Adaptive Resonance Theory (ART) models as an 

abstract representation of a cortical column.  Individual 

cortical column models are assembled in a connectionist 

manner that plausibly models the human visual 

processing stream and prefrontal cortex.  Following 

training, the model is presented with representative visual 

problems from the visual test of intelligence and for each 

the model’s output is its answer to the problem, chosen 

from a multiple choice set. 

 

The Foundry enables the straightforward construction, 

training, and evaluation of this model.  A perception 

module models the human primary visual cortex’s 

orientation columns.  This module takes as an input a 

rasterized visual intelligence test problem and outputs 

real-valued cogxels representing the degree to which a 

given line orientation is detected in the input image in 

each of a set of retinotopic receptive areas.  Cortical 

columns are implemented as cognitive modules.  Each 

cognitive module contains a single Fuzzy ART as well as 

Figure 4. Operation of a Cognitive Model.  A) A 

perception module takes an external input, processes 

it, and produces outputs which are stored in cogxels in 

the Cognitive Model State.  B) The Cognitive Model 

State contains current cogxel values that change as the 

model is run across multiple update steps.  C) 

Cognitive modules take inputs in the form of cogxels 

from the shared Cognitive Model State, perform 

implementation specific processing, and then typically 

write outputs back to cogxels in the shared state.  D) 

The model's state and the associated activity of the 

modules represent its embodiment of a model of 

cognition; some modules may produce external 

outputs that can be used for purposes such as model 

evaluation or for allowing a model to control external 

components, such as in an embedded system 
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a description of what cogxels the module should use as its 

input.  The input cogxel description provides the 

mechanism for determining the wiring of the overall 

connectionist network of cortical columns.  The overall 

Cognitive Model contains the perception module and each 

of the cortical column modules, and is implemented using 

the concurrent model implementation previously 

described. 

 

Running the model is handled by the Foundry, and 

involves presenting an input image to the model during an 

update step. Refer to Figure 4 for an overview of the 

operation of the model. Internally, the Cognitive 

Framework presents the image as input to the perception 

module, causing it to produce output cogxels.  These 

cogxels reside in the blackboard-like Cognitive Model 

State.  As the model is run across multiple update steps, 

each module retrieves the appropriate input columns from 

the Cognitive Model State, and produces its own output 

cogxels.  In this model, these outputs are real-valued 

vectors produced by the Fuzzy ART contained within a 

given module. 

 

By employing the Foundry, the team was able to focus on 

the implementation details of the cortical columns and 

overall wiring of the model without having to separately 

devote effort to creating the framework for constructing, 

training, and evaluating the model.  Furthermore, the 

concurrent implementation provided by the Foundry 

allows for a significant reduction in computation time for 

model training and evaluation.  Finally, the robust set of 

machine learning algorithms included in the Foundry 

(described in section 4 below) provided the team with a 

strong foundation for implementing project specific 

functionality. 

 

4 Machine Learning Package 

The Cognitive Foundry’s Machine Learning Package 

provides a wide variety of optimized, verified, and 

validated general- and special-purpose algorithms for 

machine learning: the analysis and characterization of 

large datasets, function minimization, parameter 

estimation, prediction, and categorization.  The package is 

highly extensible, meant for allowing the rapid-

prototyping of applications based on machine learning 

and the development of new or experimental algorithms 

and architectures. Typically, in machine learning, there 

are various conflated components: the object being 

created, the learning algorithm used to create the object, 

the data upon which the algorithm operates, the 

performance measure, and statistical validation.  For 

example, we can create a neural network using gradient 

descent with a mean squared-error cost function.  

However, there are many neural-network architectures 

(feedforward, recurrent, different activation functions, 

etc.), many different learning algorithms (conjugate 

gradient, Levenberg-Marquardt, Quasi-Newton, etc.), 

many different cost functions, and many validation 

techniques. Unless these components are decoupled, the 

combinatorics quickly becomes onerous.  In keeping with 

the design philosophy of the Cognitive Foundry, the 

Machine Learning package separates each of these 

components and eliminates the need for Foundry users to 

write special-purpose code.  This allows users of new 

functions (e.g., neural-network architectures) to use 

existing learning algorithms and, conversely, creators of 

new learning algorithms to test their ideas on different 

functions.  

 

4.1 Why a Machine Learning Package? 

We created the Machine Learning package to support 

using automated knowledge-capture techniques to 

populate cognitive models.  Many such techniques are 

based on machine-learning algorithms. Furthermore, our 

research group had several implementations of similar 

machine-learning algorithms written in different 

programming languages, with slight variations on similar 

approaches.  The Machine Learning package is a common 

repository of these algorithms, so that they may be easily 

integrated into different applications and projects.   

 

Due to the decoupling of the learning algorithm from the 

object being learned, the Machine Learning package 

allows rapid prototyping and experimental testing of 

different algorithms, approaches, and function 

approximators and categorizers.  The package 

accomplishes this through the systematic use of interfaces 

and generics to encapsulate the needs of each algorithm, 

including their inputs, outputs, and parameterizations. We 

followed an object-oriented design for the entire package 

so that the different algorithms utilize common, 

interchangeable subcomponents, such as cost functions 

and statistical validation. This approach greatly simplifies 

the integration of exiting machine-learning algorithms to 

new problems and, conversely, to apply new machine-

learning algorithms to existing problems and datasets.  

We did this to focus on experimenting with different 

algorithms and parameterizations to create machine-

learning systems embedded into CS&T applications.  The 

design of the Machine Learning package makes wide use 

of Java generics and, together with the decoupling of the 

piece components of a machine-learning system, the 

source code tends to be very similar to pseudo-code from 

textbooks and research papers.  This has the result of 

greatly increasing the reusability of elements in the 

package and increasing the level of verification and 

validation of the algorithms. 

 



4.2 Learned Functions 

One of the key concepts of the Machine Learning package 

is the separation of the machine-learning algorithm from 

the function created by the algorithm, which is typically 

some form of function approximator or categorizer. For 

example, consider a prototypical function approximator, 

the artificial neural network.  Many machine-learning 

algorithms can estimate locally optimal parameters for 

neural networks, such as gradient descent, genetic 

algorithms, and inverted quadratic line search.  However, 

each of those machine-learning algorithms can estimate 

the parameters of a much broader class of function 

approximators.  Separating the function approximator 

from the machine-learning algorithm means that we only 

have to write a learning algorithm once, instead of the 

combinatorial explosion that occurs in the cross product 

of function approximators and learning algorithms.  The 

package contains many standard and specialty function 

approximators such as artificial neural networks, linear 

systems, dynamical systems, k-nearest neighbors, 

polynomials, categorizers, decision trees, support vector 

machines, and mixture of Gaussians.  Furthermore, the 

Cognitive Foundry allows developers to create their own 

functional forms, or to chain together existing functions, 

to create new functional architectures, making the 

Machine Learning Package highly extensible.  A 

fundamental ability for function approximators and 

categorizers is the ability to express itself as a vector of 

tunable parameters.  In this form, many learning 

algorithms can automatically tune the parameters of 

function approximators to achieve some desired result. 

 

4.3 Learning Algorithms 

The main paradigm of the learning package is that a 

learning algorithm is given a dataset from which to create 

a new learned object, typically a function approximator or 

categorizer. This creates a clear separation between the 

input to the algorithm, the output from the algorithm, and 

the parameters of the algorithm. There exist two primary 

learning interfaces: the Batch Learner interface and the 

Online Learner interface. Batch Learners operate only 

after all data have been collected, while Online Learners 

can operate concurrently as data are being collected.   

Each of these learners operates in a supervised or 

unsupervised manner.  Supervised-learning algorithms 

learn to generalize from example input-output pairings, 

while unsupervised-learning algorithms attempt to 

discover patterns in an unlabeled dataset to achieve some 

goal (Duda, Hart, & Stork, 2001).  We will discuss each 

of these techniques in the following sections. 

 

4.3.1 Supervised-Learning Algorithms 

Supervised-learning algorithms take a dataset of input-

output pairs and generalize them to as-yet-unseen inputs 

by finding parameter sets that minimize a cost function.  

Commonly these algorithms yield “function 

approximators” or “regression” when the outputs are real 

valued and “categorizers” when the outputs are discrete 

valued.  We provide a wide variety of supervised-learning 

algorithms such as derivative-free algorithms, gradient-

based methods, linear regression, algebraic solvers, kernel 

methods for both regression and categorization, and 

decision trees for both regression and categorization. We 

also have implemented meta-learning algorithms such as 

ensemble methods, which demonstrate the power of 

having a unified set of interfaces implemented by a 

variety of learning algorithms. A typical design pattern 

for a supervised learning algorithm is shown in Figure 5. 

 

4.3.1.1 Derivative-Free Algorithms 

There is a class of parameter-estimation algorithms that 

do not require gradient information to find a (locally) 

minimum-cost parameter set of a function.  That is, to 

find the optimal solution, these algorithms only require 

function evaluations.  While these algorithms are the most 

general, and can find optimal parameters for functions 

that are highly nonlinear with nonanalytic or inexistent 

derivatives, they tend to be less efficient than gradient-

based algorithms when gradient information can be 

computed or approximated. 

 

We have implemented standard derivative-free algorithms 

including Direction Set (Powell’s) Method, Downhill 

Simplex (Nelder-Mead) algorithm, Genetic Algorithms, 

and Simulated Annealing.  

 

4.3.1.2 Gradient-Based Algorithms 

A more restrictive class of parameter-estimation 

algorithms are those that require gradient information to 

find a (locally) minimum-cost parameter set of a function.  

These algorithms usually perform better than non-

gradient-based methods. 

 

We have implemented standard gradient-based algorithms 

including Quasi-Newton Minimization (BFGS), 

Levenberg-Marquardt Estimation, Conjugate-Gradient 

Minimization, and Gradient Descent. Many of these 
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algorithms are also guaranteed to converge using 

approximated differentiation procedures by estimating the 

parameter Jacobian from function evaluations alone.  

Oftentimes, gradient-based algorithms with approximated 

derivatives are more efficient than derivative-free 

algorithms.  We have implemented automated 

differentiation procedures for arbitrary functions to give 

users the ability to try different gradient-based and 

derivative-free algorithms. 

 

4.3.1.3 Special-Purpose Solvers 

Some special-case functions have closed-form or iterative 

optimal solutions.   These functions may be used with the 

general-purpose algorithms mentioned above or with 

solvers that exploit particular features of these special 

functions.  For example, we have implemented solvers for 

linear regression, linear systems, linear dynamical 

systems, multivariate Gaussians, and so forth.  Not 

surprisingly, these special-purpose solvers are typically 

more efficient than general-purpose solvers for the same 

functional form. 

 

4.3.1.4 Kernel Methods 

We have extensive support for kernel-based methods, 

including a set of useful kernel functions and tools for 

composing kernel functions. Kernels allow certain 

machine-learning algorithms to extend to nonvector data 

by defining a similarity measure between two inputs that 

fulfill the properties of a kernel function. As such, the 

library utilizes generics for kernels, which promotes the 

creation of kernels for new data types, which may in turn 

be plugged into existing kernel-based algorithms. We 

have implemented several kernel-based learning 

algorithms for categorization, regression, and clustering. 

 

4.3.1.5 Ensemble Methods 

Ensemble methods typically take a simple function and 

combine several together to create sophisticated responses 

to novel inputs, similar to voting schemes, game theory, 

or stock-market collaboration.  Ensemble methods are a 

natural fit for the Cognitive Foundry’s Machine Learning 

package because each machine-learning algorithm 

conforms to a standard interface that allows algorithms 

that create the same function to be interchanged, meaning 

that algorithms conforming to the same interface can be 

automatically combined using an ensemble-learning 

algorithm that utilizes the output of each learning 

algorithm. We have implemented several ensemble 

methods including Bagging and AdaBoost. 

 

4.3.2 Unsupervised Learning Algorithms 

Unsupervised-learning algorithms take a high-

dimensional space, potentially a “Big Data” problem, and 

map it to a low-dimensional and (hopefully) simpler 

space.  These algorithms are useful for understanding 

complicated relationships, identifying statistical 

regularities, and visualization. Our set of unsupervised 

algorithms emphasizes principal components analysis and 

clustering algorithms, such as k-means clustering, 

agglomerative clustering, reductionist clustering, and 

affinity propagation.  The clustering algorithms are based 

on a user-defined distance metrics that allow all 

unsupervised algorithms to be easily adapted to new types 

of data. We also exploit singular value decomposition and 

eigenvector decomposition for dimensionality reduction.  

For automated knowledge capture, unsupervised learning 

algorithms, such as the clustering algorithms listed above, 

are used to discover contexts, latent patterns, and 

relationships for a Cognitive Model automatically. 

 

4.4 Experiments and Performance Evaluation 

We have created objects that automatically evaluate the 

performance of learning algorithms against a dataset 

using statistical-hypothesis testing techniques.  These 

“Experiment” objects automatically provide performance 

confidence bounds using generally accepted validation 

techniques, such as n-fold, leave-one-out (jackknife), and 

bootstrap validation. For each experiment, a user specifies 

the dataset, learning algorithms, validation methodology, 

performance criteria, and summary statistics. The output 

of an experiment is a confidence interval describing the 

performance range and statistical confidence in the 

experiment, making it easy to compare different learning 

algorithms, algorithm parameters, or functional forms in a 

statistically significant manner. 

 

4.5 Statistics Package 

The Cognitive Foundry also includes a comprehensive 

Statistics package for performance analysis and statistical-

hypothesis testing, in addition to providing many 

probability distributions for modeling purposes. 

 

4.5.1 Null-Hypothesis Testing 

The goal of null-hypothesis testing is to determine if two 

distributions of data are different in a statistically 

significant sense.  In other words, can the observed results 

be due to chance?  This gives a user of the Cognitive 

Foundry a quantifiable confidence on the performance of 

the system.  Different statistical tests have different 

assumptions, and it is necessary to find the test 

appropriate for the problem at hand. 

 

This package contains the standard statistical tests such as 

Student-t Test, Analysis of Variance (ANOVA or F-Test), 

z Test, Kolmogorov-Smirnov Test, Fisher Sign Test, 

Wilcoxon Signed Rank Test, Mann-Whitney U Test 

(Wilcoxon Rank-Sum Test), Receiver-Operator 

Characteristic, and others.  Given the well-designed 

structure of the Cognitive Foundry, it is easy to use the 



appropriate null-hypothesis test for the given problems 

facing a project.   

 

4.5.2 Confidence Bounds 

From estimates based on different datasets, it is often 

useful to determine what possible values a parameter 

could take. For instance, what is the likely room 

temperature from a set of noisy thermometer readings?  

Likewise, how many experiment subjects do we need to 

achieve a margin of error of at most ±3%?  To answer 

these types of questions, we have implemented the 

standard confidence-bounds routines such as Student-t, 

Gaussian, Chebyshev, Markov, and Bernoulli. 

 

5 Common Math Package 

The main purpose of the Common Math package is to 

provide a common foundation of useful mathematical 

routines for building applications. Much of our research 

and many applications require mathematical rigor, and the 

main component of the Common package is to facilitate 

matrix and vector computation, decompositions, and 

solver routines, in both dense and sparse representations. 

Dense-matrix computation tends to be faster than its 

sparse-matrix counterpart, however, many “Big Data” 

applications simply cannot use a dense-matrix 

representation.  The Cognitive Foundry gives users the 

flexibility to choose the representation that best suits their 

needs.  The basic definitions of a matrix and vector are 

interfaces, which gives Foundry users the freedom to 

write their own Matrix package.  The default Matrix 

package in the Cognitive Foundry is based on the publicly 

available Matrix Toolkits for Java (MTJ) library.  MTJ 

performs its computations, decompositions, and solvers 

using callbacks into the best-in-class native libraries 

LAPACK and BLAS, resulting in computational speeds 

competitive with other heavily optimized computational 

packages.  If these native libraries are not available, MTJ 

will redirect the calls to platform-independent Java 

versions of LAPACK and BLAS, which are slower than 

the native versions.  This flexibility allows Cognitive 

Foundry applications to use the most efficient 

computational engine available, while preserving cross-

platform compatibility. 

 

6 Related Work 

Agent-based (Wooldrige & Jennings, 1995) and cognitive 

simulation is an active area of research, and there are 

many cognitive architectures in existence, such as ACT-R 

(Anderson & Lebiere, 1993) and SOAR (Laird, Newell, 

& Rosenbloom, 1987). The Foundry’s Cognitive 

Framework builds upon previous research in cognitive 

frameworks at Sandia by Forsythe and Xavier (2002). 

However, unlike cognitive architectures that are built 

around a single theory of cognition, the Foundry promotes 

modularity and experimenting with various aspects of 

different theories of cognition. This provides a value 

added over existing architectures in that the relevant 

cognitive components can be utilized to fill project 

specific needs. This includes the ability to choose the 

appropriate level of modeling fidelity for a given 

application.  The Foundry is also different in its focus on 

integrated automated knowledge capture and the ability to 

create lightweight cognitive components that are easy to 

embed in agents and stand-alone CS&T applications.  

 

An example of a project that incorporated different 

cognitive architectures is the Agent-Based Modeling and 

Behavior Representation (AMBR) Model Comparison 

project (Gluck & Pew, 2001), which involved  comparing 

the performance of different cognitive architectures in 

modeling the behavior of an air traffic controller. The 

Foundry is designed to support combining and comparing 

existing models of cognition developed within its 

environment, similar to the comparisons performed using 

the HLA environment in AMBR. It also provides its own 

robust library for the development of new models, and for 

the combination of new and existing models. 

 

There are also other libraries of machine-learning 

algorithms in existence, such as Weka (Witten & Frank, 

2005) and RapidMiner, formerly YALE (Mierswa, Wurst, 

Klinkenberg, Scholz, & Euler, 2006). However, the 

Foundry’s learning package differs from existing 

packages in several ways. First, the Cognitive Foundry 

does not force users to create datasets in a fixed data 

structure for the machine-learning algorithms, such as 

vector data. Instead, the Foundry algorithms are 

implemented so that they can be used with a variety of 

data structures by its use of generic type parameters. The 

Foundry’s Machine Learning package is also different 

because it spans the entire development cycle of a 

learning system from data collection, analysis, 

experimentation, rigorous tools for performance 

validation, and deployment into applications, including 

embedded systems. The package is targeted at making it 

easy to embed the function created through learning into 

other applications, such as agent models, which 

distinguishes it from other packages that are focused 

primarily on data mining and visualization. 

 

7 Conclusions and Future Work 

We have presented the Cognitive Foundry and its two 

primary components that relate to agent behavior 

modeling: the Cognitive Framework and Machine 

Learning packages. For future work, we would like to 

create a graphical user interface to increase the ability of 

users with little computer-programming experience to 

create cognitive models and machine-learning systems.  



We also plan on adding new cognitive modules, learning 

algorithms, and other packages, such as text and image 

analysis, to the Foundry.  
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